日期:2014-05-20 浏览次数:21250 次
static System.Numerics.BigInteger Factorial(System.Numerics.BigInteger i)
{
if (i.IsZero || i.Sign == -1)
return System.Numerics.BigInteger.Zero;
if (i.IsOne)
return System.Numerics.BigInteger.One;
else
return i * Factorial(i - 1);
}
static void Main(string[] args)
{
if (args.Length < 1)
return;
int i;
if (int.TryParse(args[0], out i))
{
System.Numerics.BigInteger bi = i;
System.Diagnostics.Stopwatch sw = System.Diagnostics.Stopwatch.StartNew();
bi = Factorial(bi);
sw.Stop();
//计算结果太长,只输出结果长度
Console.Write("结果长度:{0} 用时:{1}", bi.ToString().Length, sw.Elapsed);
}
}
static System.Numerics.BigInteger Factorial(System.Numerics.BigInteger i)
{
System.Numerics.BigInteger result = 1;
while (true)
{
if (i < 2)
return result;
result *= i;
i--;
}
}
using System;
using System.Collections.Generic;
using System.Linq;
using Oyster.Math;
namespace csdnTest
{
class Program
{
static void Main(string[] args)
{
DateTime beginTime = DateTime.Now;
IntX result = Factorial(1000000);
DateTime endTime = DateTime.Now;
Console.WriteLine(endTime - beginTime);
Console.WriteLine(result);
Console.ReadKey();
}
static IntX Factorial(int n)
{
int[] counter = GetPowCounter(n);
SortedDictionary<IntX, bool> sDict = new SortedDictionary<IntX, bool>();
//计算幂乘并将结果压入优先队列(使用优化过的大数乘法,在计算相等规模的大数乘法时,效率最高)
for (int i = 2; i <= n; i++)
{
if (counter[i] > 0)
sDict.Add(IntX.Pow(i, (uint)counter[i]), false);
}
IntX valueA = 1, valueB;
//用SortedDictionary模拟优先队列进行最后的计算
while (sDict.Count > 1)
{
valueA = sDict.ElementAt(0).Key;
valueB = sDict.ElementAt(1).Key;
sDict.Remove(valueA);
sDict.Remove(valueB);
sDict.Add(valueA * valueB, false);
}
return sDict.ElementAt(0).Key;
}
//做质因数分解,以便使用幂乘进行计算
static int[] GetPowCounter(int n)
{
int[] pList = GetPrime(n);
int[] pCounter = new int[n + 1];
for (int i = 0; i < pList.Length; i++)
{
int k = n;
while ((k /= pList[i]) > 0)
pCounter[pList[i]] += k;
}
return pCounter;
}
//生成质数列表
static int[] GetPrime(int n)
{
List<int> prime = new List<int>();
bool[] flags = new bool[n + 1];
for (int i = 2; i <= n; i++)
{
if (!flags[i])
prime.Add(i);
for (int j = 0; j < prime.Count; j++)
{
if (prime[j] * i > n) break;
flags[prime[j] * i] = true;
if (i % prime[j] == 0) break;
}
}
return prime.ToArray();
}
}
}