1.count
db.user.find().count();
db.user.count();
db.user.count({"name": "路人甲0"});
2.distinct
//语法
db.collection.distinct( key )
//e.g.
db.user.distinct("name");
3.group
//语法
db.collection.group( { [key|$keyf] : ...[, [cond/condition]: ...], initial: ..., reduce : ...[, finalize: ...] } );
db.runCommand({"group": { "ns": ..., [key|$keyf] : ...[, [cond/condition]: ...], initial: ..., $reduce : ...[, finalize: ...] }});
key: 分组依据的键
$keyf: 分组函数
cond/condition: 过滤条件
initial: 每一分组的初始化状态,将传递给reduce函数
reduce/$reduce: 累加器,系统会传递两个参数,当前文档和当前文档所属分组的累加结果
finalize: 对分组结果进行调整,参数为每个分组的累加结果
e.g.
db.user.group({
"key": {"name": 1, "age": 1},
"cond": {"age": {"$gt": 3}},
"initial": {"count": 0},
"reduce": function(doc, result) {
result.count++;
}
});
db.user.group({
"$keyf": function(doc) {return {"name": doc.name.substr(2)};},
"condition": {"age": {"$gt": 3}},
"initial": {"count": 0},
"reduce": function(doc, result) {
result.count++;
}
});
db.user.group({
"key": {"name": 1},
"condition": {"age": {"$gt": 3}},
"initial": {"count": 0},
"reduce": function(doc, result) {
result.count++;
},
"finalize": function(result){
result.name = result.name.substr(2);
}
});
4.MapReduce
语法
db.collection.mapReduce( mapFunction , reduceFunction , <optional params> );
mapFunction: map函数
reduceFunction: reduce函数,一定要能被反复调用
<optional params>:
--out: 存放结果的集合名
--query: 过滤条件
db.runCommand({"mapreduce": ..., "map": ..., "reduce": ...,, <optional params> });
mapreduce:集合名
map:map函数
reduce:reduce函数
<optional params>:
--finalize
--keeptemp:连接关闭时结果集合是否保存?
--output:存放结果的集合名(隐含着keeptemp: true)
--query:
--sort:在发送map前是否先给文档排序
--limit:发往map函数的文档数量的上限
--scope:javascript中要用到的变量
--verbose:是否产生更加详尽的服务器日志
e.g.
db.user.mapReduce(
function(){
for (var key in this) {
emit(key, {"count": 1});
}
},
function(key, values){
var count = 0;
for (var value in values) {
count++;
}
return {"count": count};
},
{
"out": "key_count_temp",
"query": {"age": {"$gt": 3}}
});
结果:
{
"result" : "key_count_temp",
"timeMillis" : 162,
"counts" : {
"input" : 50,
"emit" : 250,
"reduce" : 5,
"output" : 5
},
"ok" : 1,
}
result:存放结果的集合名
timeMillis:操作花费的时间
counts:
--input:发送到map函数的文档个数
--emit:在map函数中emit被调用的次数
--reduce:reduce被调用的次数
--output:结果集合中创建的文档数量
